ARLGORITHM ALLEY

Password Generation
by Bloom Filters

Williom Stallings

Introduction
by Bruce Schneier

Niklaus Wirth said: “Algorithms+data structures=programs.”
Every computer program consists of complex algorithms: to
sort the database, compute the formulas, draw the graphics,
and display the data. Often, the difference between a good
program and a bad one is the underlying algorithms.

“Algorithm Alley” explores the design and implementation
of algorithms. Every month I'll present useful algorithms that
you can implement today. The algorithms will cover a variety
of areas— computation, graphics, databases, networking, ar-
tificial intelligence, and more— and be relevant to many more
applications.

The ultimate goal of this column is to help you think about
algorithms so you can develop your own. A craft so varied as
programming cannot be taught as a series of recipes. No mat-
ter how many algorithms I present, you're going to need some-
thing else. If T can teach you general principles of algorithms,
then you can take them with you wherever you program.

My first column is about Bloom filters, a method of hashing
that greatly reduces memory requirements at the expense of
false “hits.” They are useful in a variety of applications, partic-
ularly those in which no calculation is required if the search
is unsuccessful. For example, you might want to check some-
one’s credit rating or passport number, but do nothing else if
the record doesn’t exist. While Bloom filters will occasionally
report that a record exists when it doesn’t, they’ll never erro-
neously report that a record doesn’t exist when it does.

Consider a differential file: a separate file of changes to a

main database. Every night, the changes are incorporated into
the database. Meanwhile, each database access must first check
the differential file to see if the record of interest has been
modified. A Bloom filter can reduce accesses to the differential
file. For instance, each time a record is updated, you hash the
record key with this technique. Then, you access a record
check to see if there is a hit against the hash file. If there is
no hit, you can be guaranteed that the record was not mod-
ified. If there is a hit, you must search the differential file.

How about a hyphenation routine with a general rule and
a table of exceptions? If you don't find the word in the ex-
ception hash file, use the general rule. If there is a hit, search
the word database for the particular exception.

Bloom filters can even work as spelling checkers. Occasion-
ally a nonword “passes,” but the dictionary can be stored in
far less space than it would be as individual words.

In this month’s column, Bill Stallings uses Bloom filters in
a similar application. Instead of checking for correctly spelled
words, however, he uses Bloom filters to check for easy-to-
guess passwords like those that made the 1989 Internet Worm
an infamous part of computer lore. As you might guess, such
passwords, which are highly susceptible to computer break-
ins, bring smiles to crackers’ faces, and Bill's approach to
Bloom filters and computer-generated passwords should be
seriously considered.

I look forward to hearing from you about the algorithms
you find most useful, algorithms you’d like to find out more
about, or those that you've developed and that you'd like to
share with other DDJ readers. You can contact me at schneier@
chinet.com, or through the DDJ offices.

system intruder’s objective is to gain
L access to your computer system or
. to increase the range of privileges
accessible on it. Generally, this re-
quires that the intruder acquire informa-
tion that should have been protected, usu-
ally via user passwords. With knowledge
of someone else’s password, the intruder
can log into a system and exercise all the
privileges accorded to the legitimate user.

Left to their own devices, many users
choose a password that is too short or
too easy to guess. However, if users are

William is president of Comp-Comm
Consulting of Brewster, MA. He is the au-
thor of over a dozen books on data com-
munications and computer networking,
including Network and Internetwork
Security (Prentice-Hall, 1994). He can be
reached at stallings@acm.org.

Dr. Dobb’s Journal, August 1994

o — VV

assigned passwords consisting of, say,
eight randomly selected, printable char-
acters, password cracking can be effec-
tively rendered impossible. The problem
with this approach is that most users can’t
remember such passwords. Fortunately,
even if we limit the password universe
to strings of characters that are reason-
ably memorable, the size of the universe
is still too large to permit practical pass-
word cracking. Our goal, then, should
be to eliminate guessable passwords
while allowing the user to select a pass-
word that is still memorable. There are
four basic techniques currently in use to
enable this:

e User education.

e Computer-generated passwords.
e Reactive password checking.

e Proactive password checking.

Users can be told the importance of us-
ing hard-to-guess passwords and can be
provided with guidelines for selecting
strong passwords. This user-education
strategy is unlikely to succeed at most lo-
cations because many users will simply
ignore the guidelines, while others may
not be good judges of what is a strong
password. For example, many users (mis-
takenly) believe that reversing a word or
capitalizing the last letter makes a pass-
word unguessable.

Computer-generated passwords also
have problems. If the passwords are ran-
dom in nature, users will not be able to
remember them. Even if the password is
pronounceable, the user may have diffi-
culty remembering it and so be tempted
to write it down. In general, computer-
generated password schemes have a his-
tory of poor acceptance by users.

119

ARLGORITHM ALLEY

Password Generation
hy Bloom Filters

Williom Stallings

Introduction
by Bruce Schneier

Niklaus Wirth said: “Algorithms+data structures=programs.”
Every computer program consists of complex algorithms: to
sort the database, compute the formulas, draw the graphics,
and display the data. Often, the difference between a good
program and a bad one is the underlying algorithms.

“Algorithm Alley” explores the design and implementation
of algorithms. Every month I'll present useful algorithms that
you can implement today. The algorithms will cover a variety
of areas— computation, graphics, databases, networking, ar-
tificial intelligence, and more— and be relevant to many more
applications.

The ultimate goal of this column is to help you think about
algorithms so you can develop your own. A craft so varied as
programming cannot be taught as a series of recipes. No mat-
ter how many algorithms I present, you're going to need some-
thing else. If I can teach you general principles of algorithms,
then you can take them with you wherever you program.

My first column is about Bloom filters, a method of hashing
that greatly reduces memory requirements at the expense of
false “hits.” They are useful in a variety of applications, partic-
ularly those in which no calculation is required if the search
is unsuccessful. For example, you might want to check some-
one’s credit rating or passport number, but do nothing else if
the record doesn’t exist. While Bloom filters will occasionally
report that a record exists when it doesn’t, they’ll never erro-
neously report that a record doesn’t exist when it does.

Consider a differential file: a separate file of changes to a

main database. Every night, the changes are incorporated into
the database. Meanwhile, each database access must first check
the differential file to see if the record of interest has been
modified. A Bloom filter can reduce accesses to the differential
file. For instance, each time a record is updated, you hash the
record key with this technique. Then, you access a record
check to see if there is a hit against the hash file. If there is
no hit, you can be guaranteed that the record was not mod-
ified. If there is a hit, you must search the differential file.

How about a hyphenation routine with a general rule and
a table of exceptions? If you don't find the word in the ex-
ception hash file, use the general rule. If there is a hit, search
the word database for the particular exception.

Bloom filters can even work as spelling checkers. Occasion-
ally a nonword “passes,” but the dictionary can be stored in
far less space than it would be as individual words.

In this month’s column, Bill Stallings uses Bloom filters in
a similar application. Instead of checking for correctly spelled
words, however, he uses Bloom filters to check for easy-to-
guess passwords like those that made the 1989 Internet Worm
an infamous part of computer lore. As you might guess, such
passwords, which are highly susceptible to computer break-
ins, bring smiles to crackers’ faces, and Bill's approach to
Bloom filters and computer-generated passwords should be
seriously considered.

I look forward to hearing from you about the algorithms
you find most useful, algorithms you’d like to find out more
about, or those that you've developed and that you’d like to
share with other DDJ readers. You can contact me at schneier@
chinet.com, or through the DDJ offices.

. system intruder’s objective is to gain
L access to your computer system or
| to increase the range of privileges
L accessible on it. Generally, this re-
quires that the intruder acquire informa-
tion that should have been protected, usu-
ally via user passwords. With knowledge
of someone else’s password, the intruder
can log into a system and exercise all the
privileges accorded to the legitimate user.

Left to their own devices, many users
choose a password that is too short or
too easy to guess. However, if users are

William is president of Comp-Comm
Consulting of Brewster, MA. He is the au-
thor of over a dozen books on data com-
munications and computer networking,
including Network and Internetwork
Security (Prentice-Hall, 1994). He can be
reached at stallings@acm.org.

Dr. Dobb’s Journal, August 1994

o _Fv T

assigned passwords consisting of, say,
eight randomly selected, printable char-
acters, password cracking can be effec-
tively rendered impossible. The problem
with this approach is that most users can't
remember such passwords. Fortunately,
even if we limit the password universe
to strings of characters that are reason-
ably memorable, the size of the universe
is still too large to permit practical pass-
word cracking. Our goal, then, should
be to eliminate guessable passwords
while allowing the user to select a pass-
word that is still memorable. There are
four basic techniques currently in use to
enable this:

e User education.

e Computer-generated passwords.
e Reactive password checking.

e Proactive password checking.

Users can be told the importance of us-
ing hard-to-guess passwords and can be
provided with guidelines for selecting
strong passwords. This user-education
strategy is unlikely to succeed at most lo-
cations because many users will simply
ignore the guidelines, while others may
not be good judges of what is a strong
password. For example, many users (mis-
takenly) believe that reversing a word or
capitalizing the last letter makes a pass-
word unguessable.

Computer-generated passwords also
have problems. If the passwords are ran-
dom in nature, users will not be able to
remember them. Even if the password is
pronounceable, the user may have diffi-
culty remembering it and so be tempted
to write it down. In general, computer-
generated password schemes have a his-
tory of poor acceptance by users.

119

ALGORITHM ALLEY

. ° Reactive Password Checking
Save DlSk Space A reactive password-checking strategy is
‘ ‘ : | | one in which the system periodically runs
— ; e\l o = . its own password cracker to find guess-
able passwords. The system cancels any
passwords that are guessed and notifies
the user. This tactic has a number of
drawbacks. First, it is resource intensive
if the job is done right. Because a deter-
mined opponent who is able to steal a
password file can devote hours or even
days of full CPU time to the task, an ef-
fective reactive password checker is at a
distinct disadvantage. Furthermore, any
existing passwords remain vulnerable until
the reactive password checker finds them.

Proactive Password Checking

The most promising approach to im-
proved password security is a proactive
password checker. In this scheme, a user
is allowed to select his or her own pass-
word. However, at the time of selection,
the system checks to see if the password
is allowable and, if not, rejects it. Such
checkers are based on the philosophy
that, with sufficient guidance from the
system, users can select memorable pass-
words from a fairly large password space
that are not likely to be guessed in a dic-
tionary attack.

The trick with a proactive password
checker is to strike a balance between user
acceptability and password strength. If the
system rejects too many passwords, users
will complain that it is too hard to select
a password. If the system uses a simple
algorithm to define what is acceptable,
password crackers, too, can refine their
guessing technique.

The most straightforward approach is a
simple system for rule enforcement. For
example, all passwords have to be at least
eight characters long, or the first eight char-
acters must include at least one uppercase
letter, one lowercase letter, one numeral,
and one punctuation mark. These rules
could be coupled with advice to the user.
Although this approach is superior to sim-
ply educating users, it may not be suffi-
cient to thwart password crackers. This
scheme alerts crackers as to which pass-
words 7ot to try, but may still make it pos-
sible to do password cracking.

Another possible procedure is simply to
compile a large dictionary of possible “bad”
passwords. When a user selects a pass-
word, the system checks to make sure that

: = ; . ‘ ‘ ' I | it is not on the disapproved list. However,
The Data Compression Experts ‘ one problem with this approach is space—

1 od Drive Brown De v / ‘ the dictionary must be very large to be
effective. Another problem is time— the
time required to search a large dictionary
may itself be great. In addition, to check
for likely permutations of dictionary words,
either those words must be included (mak-
ing it truly huge), or each search must also
involve considerable processing.

CIRCLE NO. 539 ON READER SERVICE CARD
120 Dr. Dobb’s Journal, August 1994

Virtual Memory

Management Library

Now you can
access all available
memory without the
complexity, learning
curve and expense of
a DOS extender.

[corsinooc §

The Crystalogic VIRTUAL MEMORY
MANAGEMENT LIBRARY for C/C++
provides easy access to Expanded,
Extended & Virtual Disk Memory.
It offers instant access to all avail-
able memory from DOS based
C/C++ programs. Easy to learn with
“no royalties”. Now your programs
can dynamically determine and use
all available memory resources.
Perfect for graphics, data collection,
large data files or any applications
that use large amounts of data.
Includes support for Microsoft,
Borland or any ANSI C or C++

coinpiler. Non lﬁ)yalties.
5249, ves
It runs with

Visa, Mastercard & American Express Accepted

REQUIREMENTS: NetWare
IBM or Compatible PC, MS-DOS V 3.3 or later,
One 5.25 or 3.5” floppy disk drive, ANSI C/C++ compiler

_CRYSTALOQIC

PERFECTLY LOGICAL SOFTWARE
2525 Perimeter Place Dr., Suite 121 o Nashville, TN 37214

To Order Call 1-800-915-6442

FOR MORE INFORMATION 1-800-391-9190
FAX 615-391-5292 « BBS 615-391-8065
Dealer, OEM and VAR'’s inquires welcomed.

CIRCLE NO. 931 ON READER SERVICE CARD
122

ALGORITHM ALLEY

(continued from page 120)

Bloom Filters

A different approach is based on the use
of Bloom filters, a hashing technique that
makes it possible to determine, with high
probability, whether a given word is in a
dictionary. The amount of online storage
required for the scheme is considerably
less than that required to store an entire
dictionary of words and permutations, and
the processing time is minimal. Eugene
Spafford and his colleagues at Purdue have
adapted the Bloom filter for proactive pass-
word checking.

A Bloom filter of order % consists of a
set of kindependent hash functions H;(x),
H,(x),..., H(x), where each function
maps a word into a hash value in the range
0 to N-1. That is, Hi(X) =y 1<i<k;
1<j<D; 0<y<N-1, where X~jth word
in the password dictionary, and D=num-
ber of words in the password dictionary.

This procedure is then applied to the

dictionary: 1. A hash table of N bits is
defined, with all bits initially set to 0;
2. for each dictionary word, its k hash
values are calculated, and the correspond-
ing bits in the hash table are set to 1.
Thus, if H,(X;)=67 for some (i), then
the 67th bit of the hash table is set to 1;
if the bit already has the value 1, it re-
mains at 1.

When a new password is presented to
the checker, its & hash values are calcu-
lated (see Figure 1). If all the correspond-
ing bits of the hash table are equal to 1,
then the password is rejected. All pass-
words in the dictionary will be rejected.
But there will also be some “false posi-
tives”— passwords that are not in the dic-
tionary but that do produce a match in
the hash table. To see this, consider a
scheme with two hash functions. Suppose
that the passwords undertaker and hulk-
hogan are in the dictionary, but XlnsXgin
is not. Further suppose that:

Dr. Dobb’s Journal, August 1994

(@ P= (1—e_kD/N)k =(1—-e'kln)k

—k

Example 1: Approximating the
probability of a false positive.

H,(undertaker)=25
H,(hulkhogan)=275
H,(XInsXqtn)=665
H,(undertaker)=998
H,(hulkhogan)=665
H,(XInsXqtn)=998

If the password XnsXqtn is presented
to the system, it will be rejected even
though it is not in the dictionary. If there
are too many such false positives, it will
be difficult for users to select passwords.
Therefore, you would like to design the
hash scheme to minimize false positives.
It can be shown that the probability of a
false positive can be approximated by the
equation in Example 1(a) or, equivalent-
ly, Example 1(b), where k=number of
hash functions, N=number of bits in hash
table, D=number of words in dictionary,
and R=(N/D), the ratio of hash-table size
(bits) to dictionary size (words).

Figure 2 plots P as a function of R for
various values of k. Suppose you have a
dictionary of one million words and wish
to have a 0.01 probability of rejecting a
password not in the dictionary. If you
choose six hash functions, the required ra-
tio is R=9.6. Therefore, you need a hash
table of 9.6x10° bits, or about 1.2 mega-
bytes of storage. In contrast, storage of the
entire dictionary would require on the or-
der of eight megabytes. Thus, you achieve
a compression factor of almost 7. Further-
more, password checking involves the
straightforward calculation of six hash func-
tions and is independent of the size of the
dictionary, whereas with the use of the full
dictionary, there is substantial searching.

References
Bloom, B. “Space/time Trade-offs in Hash
Coding with Allowable Errors.” Commu-
nications of the ACM (July 1970).
Spafford, E. “Observing Reusable Pass-
word Choices.” Proceedings, UNIX Secu-
rity Symposium III, September 1992.
. “OPUS: Preventing Weak Pass-
word Choices.” Computers and Security
(No. 3, 1992).
Stallings, W. Network and Internetwork
Security: Principles and Practice. Engle-
wood Cliffs, NJ: Prentice-Hall, 1994.

DDJ

To vote for your favorite article, circle inquiry no. 12.

Dr. Dobb’s Journal, August 1994

REUSABLE, PORTABLE CODE TAKES A MAJOR STEP FORWARD

NEW BRI PTR EREN T lE Gl filel s e
If you're frying to write C++ code that really is reusable and portable, here’s good news:
A standardized set of C++ libraries is on the way. Working with just about any C++
implementation, they give you powerful new tools for writing code that

fruly meets the promises of object fechnology.

@ ou need to understand this new
standard, and there’s only one
comprehensive book on the subject:
The Draft Standard C++ Library, by P.J.
Plauger. It covers every library class
and function mandated by the
standard. It includes a working
implementation, with thousands of
lines of highly-portable sample
code you can start using today. It
even includes the actual text of the
proposed standard, with answers
to detailed technical questions.

Youll learn about pioneering features such as library
templates, exceptions and namespaces — and gain practical
insight into the C++ libraries you’re already using.

Nobody’s better qualified to present this essential
information than P.J. Plauger. He wrote the leading reference
to C libraries, The Standard C Library, and has served as
editor for the library portion of the draft C++ standard.

Whether you're adapting C++ class libraries or creating
them, this book is invaluable.

You'll find it at your participating PTR Prentice Hall Magnet Store. To locate the nearest store,
fax 201-816-4146, or fip to ftp.prenhall.com. (Log in as Anonymous and use your e-mail
address as your password.) Or gopher to gopher.prenhall.com.

=5 Magnet
“Store

THE PROFESSIONAL’S CHOICE

ISBN:0-13-117003-1

,,,,,,,,, e

CIRCLE NO. 448 ON READER SERVICE CARD

123

